Comparing the performance of yolov10s and ssd300 models in the problem of automatic fruit identification and classification

Các tác giả

  • Bui Xuan Tung
  • Trinh Quang Minh
  • Ngo Thi Lan
  • Dang Thi Dung
  • Quach Dai Vinh

Từ khóa:

YOLOv8, YOLO-NAS, Vehicle License Plate Detection, Machine Learning, Deep Learning

Tóm tắt

The research focuses on applying deep learning to automate the fruit recognition and classification
process, meeting the development needs of modern agriculture. Applying this technology helps improve efficiency and classification quality and reduces labor costs, resulting in lower product
prices. The research team used two deep learning models, SSD300 and YOLOv10s, to recognize and
classify six types of fruits: apples, bananas, kiwis, lemons, oranges, and strawberries. The dataset
consists of 2575 images divided into Train, Validation, and Test sets with a ratio of 87%-8%-4%. The images were resized to 300x300 pixels for SSD300 and 640x640 pixels for YOLOv10s. The experimental results show that the YOLOv10s model achieved higher precision at 96% compared to 93% for SSD300. The research also proposes future improvements to enhance the system’s accuracy and applicability.

Tiểu sử của Tác giả

Bui Xuan Tung

Tay Do University

Trinh Quang Minh

Tay Do University

Ngo Thi Lan

Tay Do University

Dang Thi Dung

Can Tho University of Engineering and Technology

Quach Dai Vinh

Can Tho University of Engineering and Technology

Đã Xuất bản

2025-03-30

Cách trích dẫn

Bui Xuan Tung, Trinh Quang Minh, Ngo Thi Lan, Dang Thi Dung, & Quach Dai Vinh. (2025). Comparing the performance of yolov10s and ssd300 models in the problem of automatic fruit identification and classification. Tạp Chí Khoa học Và Công nghệ Trường Đại học Xây dựng Miền Tây, (12), 5–13. Truy vấn từ http://journalmtu.site/index.php/mtu/article/view/51

Số

Chuyên mục

Bài báo

Các bài báo tương tự

1 2 3 > >> 

Bạn cũng có thể bắt đầu một tìm kiếm tương tự nâng cao cho bài báo này.